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Abstract. Spin-glass ordering in conventional models normally reflects, on average, the 
rotational symmetry of the Hamiltonian. We demonstrate that the four-state clock model 
is exceptional in that the average spin-glass order is essentially collinear (twofold symmetric) 
despite the fourfold symmetry of the Hamiltonian. Fluctuation effects are predicted only 
for systems with pure states unrelated by symmetry. However, the X Y  spin glass with 
finite fourfold anisotropy is predicted to have conventional (fourfold symmetric/isotropic) 
ordering. 

1. Introduction 

Spin glasses continue to be of much active interest (for recent reviews see Binder and 
Young 1986, van Hemmen and Morgenstern 1983,1986, MCzard et a1 1987, Sherrington 
1987) with new features and  applications discovered regularly. This paper introduces 
another hitherto unexpected feature, an anisotropic spin-glass solution to a spin-glass 
model with an isotropic Hamiltonian. 

The model in question is a four-state clock model with symmetric exchange P{J , , }  = 
P I - J , } .  A p-state clock model is a special case of a vector spin model in which the 
vectors (of constant length) may point only in p equally angularly spaced orientations 
in a plane. To date, it has generally been considered that vector spin-glass models 
with isotropic and unbiased exchange and in the absence of external fields or anisotropy 
can be described in terms of spin-glass solutions which are isotropic in spin space, i.e. 

where a,  p denote replicas (Edwards and Anderson 1975), p, v Cartesian coordinates, 
and the ( ) brackets indicate a thermal average over the replica Hamiltonian. One 
might therefore anticipate that even-pll clock spin glasses with symmetric exchange 
distributions will exhibit a corresponding isotropy over the allowed spin orientations. 
In  this paper we demonstrate that, although all other clock glasses exhibit this isotropy 

$ On leave from: Departamento de Fisica Te6rica e Experimental da UFRN, 59 000 Natal, RN, Brazil. 
'1 Odd-p clocks lack inversion as an operation in their space of variables. For p = 3, for which clock and 
Potts models are isomorphic, this is known to lead to a ferromagnetic component to the spin-glass phase 
beneath a given critical temperature (Elderfield and Sherrington 1983a). 
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2836 F D Nobre, D Sherrington and A P Young 

in their transitions from paramagnet to spin glass+, the four-state clock is exceptional. 
For the four-state clock, for all temperatures beneath the paramagnet to spin-glass 
transition, the spin-glass state is highly anisotropic; 

or 

with small fluctuations from collinearity only showing u p  because of replica symmetry 
breaking. 

In § 2 we demonstrate the special character of p = 4 within the realm of p-state 
clock glasses and show, by means of a mapping to two identical k ing  spin glasses and  
by considering the influence of an infinitesimal field, that (1.2) should follow. In § 3 
we introduce a higher-order test function able to distinguish between isotropy and  
quasi-collinearity, and also (in principle) to show up  the fluctuations from perfect 
collinearity expected from replica symmetry breaking. We also report Monte Carlo 
simulations demonstrating the collinearity. 

Finally, in § 4, we discuss the relationship of the four-state clock to an X Y  spin 
glass with fourfold anisotropy. The spin-glass phase has the normal fourfold symmetry 
except in the limit of infinite anisotropy where there is an  effectively first-order transition 
to twofold symmetry. 

2. The four-state clock spin glass 

A p-state clock model is defined by 

H = - C J,,S, * S, 
I ‘ I  1 

where the S, are unit vectors restricted to p equally angularly spaced orientations in 
a plane. In the infinite-range spin-glass version the summation is over all pairs (ij) 
with the J,, quenched random couplings distributed according to the probability 
(Sherrington and Kirkpatrick 1975) 

(2.2) 

In  the present discussion we assume this form but we take the ferromagnetic offset Jo 
to be zero, so the system is unbiased. 

For the four-state model (2.1) can usefully be mapped into two identical Ising 
models. However, for the moment we shall not pursue this mapping but rather provide 
a discussion in terms applicable to a general p-state model. We do  so within a 
representation in which the components of S, are 

P(J, , )  = ( N/277J2)’” exp[-N(J,  -Jo/N)’/2J2].  

s,, = cos 8, S,, =sin  8, (2.3) 

277 
8, = - k, 

P 
( k , = O ,  1 ) * . . ,  (p -1 ) ) .  (2.4) 

+ Even for p = 3, the transition from paramagnet to spin glass is to an ‘isotropic’ spin-glass phase if  the 
exchange distribution is symmetric, although it does have other unusual features when replica symmetry 
breaking is considered (Elderfield and Sherrington 1983a, b, Goldbart and Elderfield 1985, Gross et a/ 1985). 
The anisotropic spin glass occurs only at a lower temperature for symmetric exchange. 



Spontaneously anisotropic spin-glass order 2837 

Applying the standard replica trick (Edwards and Anderson 1975, Sherrington and  
Kirkpatrick 1975), one obtains the free energy per spin in  the thermodynamic limit 
( N  -+ E) as the extrema1 problem 

1 
11-n n p f =  lim - min[g( R", {Qpt'})]. (2.51 

The functional g ( R " ,  {Qf!'}) is given by 

g(  R", { QKf'})  = - i n  ( P J ) '  + +( PJ) '  1 ( R i' 

where 

H,,=(PJ)*C R " [ ( S ' : ) ' - : ] + ( p J ) '  1 QEp'SESf. (2.7) 

As usual, a and p are replica labels; a, p = 1 , .  . . , n. The spins and trace are single 
site, R" is a quadrupolar parameter given by 

R" = ( ( S : ) ' ) - $  (2.8) 

" I",", P" 

while QFf' is the usual spin-glass parameter: 

Qp!' = (s;sf, a # P  (2.91 
and E:,,,, denotes a sum over pairs of different replicas, a # p. In  each case the ( ) 
bracket denotes thermal averaging with respect to H e f i .  For p = 2, our model reduces 
to the well known Ising spin glass of Sherrington and Kirkpatrick (1975) and R is 
zero. Below, we take p > 2. 

Note that g satisfies the symmetry condition 

g ( R " ,  {Q:4"}, = g ( - R " ,  I Q y ) ,  (2.10) 

where 6,  i; are the complements of p, v, i.e. if 

p = X  then p = y  

p = y  then = x. 
(2.11) 

The onset of ordering of quadrupolar or spin-glass type is signalled by the change 
of sign of the corresponding quadratic contributions to a Landau expansion of g :  

g ~ R " , { Q l : " ' } ) = - n g " + I ( P J ) ' ( A R R  C(R") '+A,,  a i u p ,  1 &" C (Qf!')2)+... (2.12) 

with 

(2.13) 

(2.14a) 

(2.146) 

At high temperatures ARR and A,, are positive and the minimum of g has R" = 0, 
QF') = 0, corresponding to a paramagnet. As the temperature is lowered A,, becomes 
zero at 

Tg = J / 2  (2.15) 
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(we work in units with k ,  = l ) ,  signalling the onset of spin-glass order. For p # 4, ARR 
does not change sign until a lower temperature and  the transition at Tg is to the normal 
isotropic spin-glass order. On the other hand, for the special case of p = 4, both AQQ 
and ARR becomes zero at T =  J/2.  Since R is an anisotropic order parameter this 
suggests that, for p = 4, the spin-glass phase is anisotropic. To demonstrate this clearly 
it is, however, useful to change representation. 

We now concentrate on p = 4. Introducing Ising variables U,, T,  (=  * 1 )  related to 
the S, by 

S , ,=g . r ,+U, )  s,, = i ( T ,  -a , )  (2.16) 

the Hamiltonian of equation (2.1) may be re-expressed as 

H = - C  J , , ( ~ , ~ , + ~ , U ~ )  { j J  = fVJ> 
( V I  

(2.17) 

i.e. the four-state clock model is equivalent to two independent Ising models with 
identical exchange interactions of strength one-half of those of the original clock 
model. We can thus use our  knowledge of the Ising spin glass to analyse the four-state 
clock glass. 

Let us note the relation of the simultaneous mode-softening of both Q and R 
degrees of freedom to the Ising model. In a replication of the Ising system described 
by equation (2.17) there are 2 n  spins per site, leading to the softening at the transition 
of 2n(2n - 1)/2 = (2n2- n )  k ing  q ‘ ” ’  modes. In the clock representation there are n 
spins with four combinations, xx, xy, yx, yy, giving 4 n (  n - 1)/2 = (2n2 -2n)  Q‘”’ 
modes. Including the n R“ modes gives a total of ( 2 n 2 - n )  modes, as in the Ising 
representation. This argument confirms that the R“ modes are completely equivalent 
to the Q‘”’ modes for the four-state clock and  must therefore be included in any 
description of the ordered state. 

We may now give a simple argument in terms of the effects of an  infinitesimal 
symmetry breaking field h, adding to the Hamiltonian in equation (2.1) the term 

(2.18) 

If the spin-glass phase is isotropic i t  should be unaffected by the application of h in 
the limit h + O .  We shall see that this is not the case. In terms of the Ising variables 

(2.19) 

kffield = - h  ’ 1 s, = - h y  c s,y - h, s,, 9 

I I I 

Hfield = - h ~  c 7, - hc 2 (+, 
I I 

where 

h, = $( h, + h, ) h , = f ( h , - h , ) .  (2.20) 

Consider the situation where h ,  > / h ,  1 > 0, so that both h, and h, are positive?. Then 
one has, 

sgn(7,)r = sgn(U,h. (2.21) 
If, furthermore, h, tends to zero then one has effective equivalence between the T and 
U so that 

(7 , )r  = ( u ~ ) T  (2.22) 

t It is interesting to note that, in the presence of a field with h ,  f h , ,  the four-state clock model will exhibit 
two Almeida-Thouless replica symmetry breaking transitions (corresponding to the T and (r transitions 
determined, respectively, by h,  and /I<,). 
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and 

( S i v ) T  = (2.23) 

where ( ) T  denotes the average with respect to H. Similarly for h,.>lh,1>0 in the 
limit h, + 0 one has 

( 7 , ) T  = - ( a , ) J  (2.24) 

so 

( s , x ) T  = O' (2.25) 

In each situation the larger field needs only to be infinitesimal, so that in either case, 
an infinitesimal field suffices to orient all the spins along the same axis on average 
over all the thermodynamic states. We refer to this cooperative order as collinear. 

Note that the above argument is independent of the details of {J , . } .  In particular, 
it is independent of whether there are many pure states not related by symmetry, as 
is the case for the infinite-range Sherrington-Kirkpatrick model, or only pure states 
related by global symmetry operations, as argued to be the case for short-ranged spin 
glasses of appropriate spatial dimensionality (Fisher and Huse 1986, Bray and Moore 
1986). However, as indicated for example by replica symmetry breaking, there can be 
significant fluctuations from average collinearity, as we demonstrate explicitly in the 
next section. An alternative discussion, based on thermodynamic state representations, 
is given in the appendix. 

3. Monte Carlo simulation 

We have carried out computer simulation to test our assertion of anisotropic spin-glass 
order. Since we must simulate a finite system, we required that a test quantity 

(i)  preserves the symmetry of the Hamiltonian (inversion and x - y  interchange), 
and 

(ii) provides different results for isotropic and anisotropic order. 
Such a quantity is 

where 

(3.1) 

(3.2) 

{ S " ) }  and {S'"}  are two independent replicas of the system, the ( ) T  refer to thermal 
averages/Monte Carlo averages over the two independently evolving systems, and [ 3," 
refers to an average over different realisations of the { J I , } .  

In the thermodynamic limit and for T >  Tg,  the Qpu have independent Gaussian 
distributions with zero mean, so 9 = 5 .  Were the low-temperature order isotropic, then 
for T +  0, limN+x 9 = 1, whereas perfect collinearity would give limN+x 9 = 0 for 
T < Tg.  
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G = -(q4) + 4(q2)2+ 2 I,' dx dy[q2(x) - q2(y)I2 

and 

(3.8) 

Clearly, if q ( x )  is a non-zero constant, the replica symmetric situation for T < Tg,  this 
indeed leads to T = 0. More generally, for the replica symmetry broken situation this 
result holds only in the limits T +  T i  and T-0 .  For small T =  ( Tg-  T ) /T , ,  q(x)  is 
given by (Kondor 1983, Thomsen er a/  1986, Sommers 1985) 

q(X) =$( 1 + 3T)X + o( T3) X < X I  

= q(1) x > x ,  (3.9) 

(3.10) 
XI = 2T-4T2+ o ( T 3 )  (3.1 1) 

leading to 

P ( T ) = $ T ( I - ~ . ) + O ( ~ ~ )  (3.12) 
so W + 0 as T-,  T i .  Also, as T- ,  0, q(x)  + 1 so 9 vanishes in this limit too. Thus, W 
is expected to be zero at T = T i  and T = 0, and non-zero in between, but remaining 
relatively small. 
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To test the above argument a Monte Carlo simulation of 9 was performed, using 
the original clock representation and a ‘heat bath’ Monte Carlo algorithm (Binder 
1979). The thermal averages were performed as Monte Carlo averages over times 
ranging from to to nt,, n > 2 ,  where to is the equilibration time estimated by the method 
of Bhatt and Young (1985), viz looking for the coalescence of upper and lower bounds 
to the spin-glass susceptibility: 

(3.13) 

The upper bound is determined by 

(3.14) 

involving temporal correlations of a single system, averaged over many realisations of 
the {I , , } .  The lower bound involves correlations between two identical but simul- 
taneously evolving systems 1,2, given by 

av 
X$i( 1 = N - ’  [ (1 st, ( + * ] 

(3.15) 

with the two systems initially uncorrelated. Data were only accepted if x&(to) and 
x ; G ( t O )  agreed within the errors. 

Naturally, only finite-sized systems can be studied, but a study of several different 
sizes can reveal key features. Our results for various sizes and  temperatures are shown 
in figure 1. They are clearly in accord with the collinear/anisotropic prediction of a 
step function at Tg = J / 2  from 9 = 0 at T i  to 9 = for T > Tg in the thermodynamic 
limit, N + CC. They unequivocally rule out isotropy. We were unable to detect the rise 
beneath T i  predicted by the Parisi theory, but this may be because the sizes studied 
are too small. 

I 
0 0.2 0.4 0.6 0.8 1.0 

T / J  

Figure 1. Plot of Y against T / J  for N = 20 (O), 80 (U), 320 (0 ) .  The transition temperature 
is predicted as TJJ  = 0.5. 
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4. XY model with fourfold anisotropy 

Since we have argued that the four-state clock glass is 'collinear', it is interesting to 
investigate the role of fourfold anisotropy on the X Y  model and look at how the glass 
phase behaves as we change the strength of this anisotropy. Thus we consider the 
model defined by the Hamiltonian 

H = - J~ COS( ei - e,) - D COS 4ei 
' V )  I 

(4.1) 

where the Bi are continuous angles varying from 0 to 27r and the {.Iv} obey the same 
probability distribution as in equation (2.2) with Jo=O. Clearly, D=O and D=CO 
correspond respectively to the pure XY and four-state clock limits. By an appropriate 
choice of origin of 8, D may be assumed non-negative. 

Standard analysis leads to an expression for the free energy functional g as in 
equation (2.12) but now with 

go = &w'+ W10(PD)1 ( 4 . 2 ~ )  

ARR = 1 - $ ( P J ) * (  1 + A )  (4.2b) 

where 

A = 1,(PD)/ lo(PD) ( 4 . 2 ~ )  

and the Zk(PD) denote modified Bessel functions of the first kind of order k. For D 
large we can expand the Bessel functions 

Thus, for D finite we always have A <  1 and the quadrupolar parameter critical 
temperature, associated with ARR = 0, is always lower than the Q-ordering temperature 
Tg = J/2t,  associated with A,, = 0, resulting in fourfold symmetric spin-glass order 
for T just below Tg. If the renormalising effect of the fourfold symmetric spin-glass 
ordering were ignored, a second transition to a partially collinear state would occur 
at the lower temperature where ARR = O .  However, when such effects are included, 
modifications result, lowering (or possibly removing) the second transition temperature 
(Toulouse and Gabay 1981). 

In order to investigate whether such a transition from fourfold to twofold symmetric 
order occurs, we consider further the stability properties of g against fluctuations 
breaking the fourfold symmetry. To this end we define 

and assume that the crossed spin-glass parameters are zero (Q'$' = Q g P )  = 0). Expand- 
ing the free-energy functional to second order in R, 2, for arbitrary {Q'"P'}, 

(4.5) g({R"l, {Q'"@'), {Z(@)}) = g(0, {Q'"P'), O ) + ; ( p J ) 2  sab( {Q '"@' } )7p~b+ .  . . 
ab 

i. Note that T, is independent of D through the corresponding independence of AQQ. In turn this is a 
consequence of the independence of D of the ratio of integrals 

d e  CO? e exp(pD cos se) /(I,?" dB exp(BD cos 48) 
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where q is an i n (  n + 1)-dimensional vector of elements 

v a  = Ra 
,.,a = z(”P)  

a =  1 , .  . . , n 

a = n + l , .  . . , f n ( n + l )  
(4.6) 

and S ( { Q ‘ ” p ) } )  is the corresponding stability matrix (de Almeida and Thouless 1978). 
S is straightforwardly expressible in terms of correlations of the isotropic spin glass 
(Nobre 1989). Continuous phase transitions to lower symmetry are signalled by the 
softening to zero of an eigenvalue of S, with { Q ( a P ) }  determined so as to minimise the 
contribution to f in equation ( 2 . 5 )  of g(0, { Q‘”@’}, 0), corresponding to the ‘isotropic’ 
phase. 

Within the replica symmetric approximation the stability can be expressed, in the 
limit n -* 0, in terms of 

( 4 . 7 ~ )  

1 1 a2g 
(pJ) ’  n-0 n dRdZ 

B R Z  = -- lim - - 

= - ( P J ) ’ [ ( c > O ( C ~ ) O  -(c2>0(c>;- (s)0(c2s)0+(c2)0(s)~I.,.~. (4.7c) 

In the equations above 

C = C O S  e s = sin 0 (4.8) 

H , = - D C O S ~ ~ + J Q ~ ’ ~ ( X C O S  e+ys in  e)  (4.9) 

( )o denotes an average over 0(0 ,25~)  with probability proportional to exp( -pHo)  where 

and [ ]x,y stands for an average over x and y which are independent Gaussian random 
variables with zero mean and unit variance. Q is given self-consistently by 

(4.10) 

The condition for stability of the fourfold symmetric phase against replica symmetric 
fluctuations lowering the symmetry to twofold is that the corresponding eigenvalues 

6 = h l h 2 = B R R B z ~ + 2 8 ~ z 2 0  ( 4 . 1 1 ~ )  

y = h I + A 2  = B R R  + (4.11b) 

Expanding perturbatively for temperatures less than the paramagnetic to fourfold 

( 4 . 1 2 ~ )  

(4.12 b) 

0 = [(dilX,.” = [(s);Ix,,.. 

of S are non-negative, which is equivalent to 

2 0. 

symmetric spin-glass transition temperature yields 

6 =2(  1 - A)[T -6(6 - 3 6  - h 2 ) ~ 2 +  O( T 3 ) ]  

y = f (  1 - A )  + ( 3  - A ) T  +a( - 5  + 2 0 A  + y A 2 ) ~ 2 +  O( T 3 )  
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where 
T = (T,- T ) /  T, T,= 512 (4.13) 

so that both S and y are greater than zero for any D < ( A  < 1) to the order exhibited 
( O ( T ~ ) ) .  Numerical investigations of 6 indicate that its stability continues for all 
temperatures beneath T g .  In the four-state clock limit ( D = W ) ,  B R R ,  BZz and BRz 
can be evaluated exactly in terms of Q, to yield 

( 4 . 1 4 ~ )  

(4.146) 

which are both positive for T < T g .  Thus the fourfold symmetric spin-glass solution 
is stable against small replica symmetric fluctuations at all D, T <  T,. 

The clock limit, D = m ,  is therefore particularly interesting and special. The 
‘collinear’ and  ‘isotropic’ spin-glass states have the same free energy and  each is stable 
against small replica symmetric fluctuations. However, an  infinitesimal field (or an  
infinitesimal twofold anisotropy) favours collinear ordering. Thus, one has a special 
kind of first-order transition to collinear order for D = cc only. 

S = 2[ 1 - ( Tg/ T ) (  1 - Q)*]’ 

y = 3 - 2( T,/ T)*(  1 - 0)’ 

5. Conclusion 

We have shown that the spin-glass phase of a four-state clock spin glass has essentially 
collinear order. Even for a symmetric exchange distribution and with only an  
infinitesimal field, the spin-glass phase has a lower (twofold) symmetry than that of 
the controlling Hamiltonian (fourfold). 

A further consideration of an  X Y  (planar) model with a fourfold anisotropy field 
indicates that, for a symmetric exchange distribution, the spin-glass order has the full 
fourfold symmetry except in the clock limit (infinite fourfold anisotropy) where there 
is a first-order transition of a novel kind to twofold symmetry. 
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Appendix. Pure-state analysis of the four-state clock model 

Let us now consider the four-state clock in terms of the pure thermodynamic states 
of the Ising model. We identify two situations for the Ising system. 
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(i) There are only two pure states, which are global inverses of one another This 
is the situation for a conventional Ising ferromagnet, and has been argued to be the 
situation for a short-range Ising spin glass (e.g. Fisher and Huse 1986, Bray and Moore 
1986), although that problem remains incompletely solved. 

( i i )  There are many pure states, which are unrelated by global symmetry (as well 
as global inverse pairs). This is the situation for the infinite-range spin-glass model 
of Sherrington and Kirkpatrick (1975). Explicit results for this case have been given 
in § 3. 

In case ( i )  it  is immediately clear that all pure states of the four-state clock are 
perfectly collinear. One has 

( T ! ) T  = * ( U , ) T  all i ( - 4 1 )  
depending upon whether the T and U systems are in the same pure Ising state or  in 
global inverses; an arbitrarily small field will determine these states. The former leads 
to 

( S I X ) .  = ( 7 , ) T  (S,,).=O (A2a)  

{ S , b ) T  = (7,) .  (SIX)T = 0. (A2b) 

and the latter leads to 

In case (ii), it is only if the T and U systems belong to global inverse Ising states 
that perfect collinearity results. In general this is not the case. Nevertheless, there 
does result average collinearity in the sense discussed in § 2, with fluctuations manifest- 
ing themselves only in higher-order moments, as discussed in § 3. To see this within 
the pure state language, let us first separate the complete set of pure states into two 
groups, each group having a common sign of overall magnetisation or positive overlap 

(A31 9 5 7  = N - '  c (Tl)<(T,)T 

where subscripts s, s' label the pure states; this is the normal separation into two groups 
of states which are effectively non-communicating in the spin-glass phase of the Ising 
spin glass and  is the analogue of the spin-up/spin-down separation in a ferromagnet?. 
We restrict ourselves to one such group and  for definiteness take the same group for 
the T and (T systems (we could equally well take the opposite group for each). 

Consider now 

QPv = PqP: N - '  c ( S F ) d S r u ) :  I4  v = x, y ('44) 
5 . 5  I 

where the F, i' are states of the clock system, with probabilities P?, 
made up  of two states, s. s' of the Ising T and U systems, with 

Each state s' is 

P: = P,P, ( ' 4 5 )  
where P, is the probability of state s. Noting that 

takes the same value irrespective of whether 7, 5 are T,  U, collinearity follows in the 
sense that 

(A7) Qxx = q Q,, = Qx, = Q b Y  = 0. 

t Infinitesimal fields can be used to nucleate these groups but are usually considered implicitly. 
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Explicitly 

where 

On the other hand, for case ( i i ) ,  the effects of fluctuations manifest themselves in 
higher moment averages, such as 'P, employed in § 3. 
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